(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, 1).
The TRS R consists of the following rules:
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
from(X) → cons(X)
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2]
transitions:
00() → 0
nil0() → 0
s0(0) → 0
cons0(0) → 0
first0(0, 0) → 1
from0(0) → 2
nil1() → 1
cons1(0) → 1
cons1(0) → 2
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
first(0, z0) → nil
first(s(z0), cons(z1)) → cons(z1)
from(z0) → cons(z0)
Tuples:
FIRST(0, z0) → c
FIRST(s(z0), cons(z1)) → c1
FROM(z0) → c2
S tuples:
FIRST(0, z0) → c
FIRST(s(z0), cons(z1)) → c1
FROM(z0) → c2
K tuples:none
Defined Rule Symbols:
first, from
Defined Pair Symbols:
FIRST, FROM
Compound Symbols:
c, c1, c2
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
FIRST(0, z0) → c
FROM(z0) → c2
FIRST(s(z0), cons(z1)) → c1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
first(0, z0) → nil
first(s(z0), cons(z1)) → cons(z1)
from(z0) → cons(z0)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
first, from
Defined Pair Symbols:none
Compound Symbols:none
(7) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(8) BOUNDS(1, 1)